Nghiên cứu một số kỹ thuật khôi phục mặt người ba chiều từ sọ. Luận án TS. Công nghệ thông tin
Nghiên cứu một số kỹ thuật khôi phục mặt người ba chiều từ sọ. Luận án TS. Công nghệ thông tin
Xem bên trong

Nghiên cứu một số kỹ thuật khôi phục mặt người ba chiều từ sọ. Luận án TS. Công nghệ thông tin

Luận án TS.Khoa học Máy tính — Đại học Công nghệ,. Đại học Quốc gia Hà Nội, 2013
Trình bày tổng quan về các cách tiếp cận giải quyết bài toán dựng lại khuôn mặt ba chiều từ hộp sọ – trong đó, chúng tôi trình bày ưu nhược điểm của từng cách tiếp cận, trình bày các cách biểu diễn bề mặt ba chiều đối tượng nói chung và bề mặt ba chiều khuôn mặt và sọ nói riêng, lựa chọn ra cách biểu diễn bề mặt ba chiều khuôn mặt và sọ phù hợp với cách giải quyết của mình. Trình bày thuật toán dựng lại mô hình ba chiều của sọ từ ảnh hai chiều dùng giải pháp điều chỉnh điểm đặc trưng sọ ba chiều để nâng cao độ chính xác của kết quả – trước tiên phân tích sai số phát sinh khi chụp ảnh quanh hộp sọ, trình bày giải pháp tăng cường độ chính xác của mô hình ba chiều của sọ bằng việc điều chỉnh điểm đặc trưng. Trình bày thuật toán dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của sọ – trong các nghiên cứu trước, độ dày mô mềm được ước lượng là trung bình độ dày mô mềm của cơ sở dữ liệu mô mềm cho trước, các điểm mốc trên mô hình ba chiều của sọ mặc dù được xác định theo thông tinnhân trắc học, tuy nhiên, số lượng xác định và biết trước, các điểm mốc nhân trắc này phụ thuộc vào thống kê của cơ sở dữ liệu về độ dày mô mềm ở vị trí tương ứng.
Electronic Resources

0.00

Tải về miễn phí bản đầy đủ PDF luận văn tại Link bản đầy đủ 1

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
MA THỊ CHÂU
NGHIÊN CỨU MỘT SỐ KỸ THUẬT KHÔI PHỤC
MẶT NGƯỜI BA CHIỀU TỪ SỌ
LUẬN ÁN TIẾN SĨ CÔNG NGHỆ THÔNG TIN
HÀ NỘI – Năm 2013
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
MA THỊ CHÂU
NGHIÊN CỨU MỘT SỐ KỸ THUẬT KHÔI PHỤC
MẶT NGƯỜI BA CHIỀU TỪ SỌ
LUẬN ÁN TIẾN SĨ CÔNG NGHỆ THÔNG TIN
HÀ NỘI – Năm 2013
Chuyên ngành: Khoa học Máy tính
Mã số: 62 48 01 01
NGƯỜI HƯỚNG DẪN KHOA
HỌC:
1. PGS. TS.BÙI THẾ DUY
2. GS. TAE – WAN KIM
i
LỜI CẢM ƠN
Để hoàn thành luận án, tác giả đã nhận được sự giúp đỡ nhiệt tình và tạo điều
kiện của rất nhiều người, sau đây tác giả xin được phép bày tỏ lời cảm ơn chân
thành:
Tôi xin gửi lời cảm ơn chân thành và sâu sắc nhất tới hai thầy Bùi Thế Duy
– Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội và thầy Tae-wan Kim –
Trường Đại học quốc gia Seoul, Hàn Quốc, những người thầy tâm huyết đã tận tình
hướng dẫn, động viên khích lệ, dành nhiều thời gian quí báu để định hướng cho tôi
trong quá trình tham gia khóa học và hoàn thiện luận án.
Tôi xin gửi lời cảm ơn chân thành tới lãnh đạo trường Đại học Công nghệ,
lãnh đạo Khoa Công nghệ thông tin, cảm ơn các đồng nghiệp đã tạo điều kiện thuận
lợi cho tôi trong quá trình làm luận án.
Tôi xin gửi lời cảm ơn chân thành tới các bạn đồng nghiệp trong phòng thí
nghiệm Tương tác Người máy, Trường Đại học Công nghệ, Đại học Quốc gia Hà
Nội, những người luôn bên tôi động viên, góp ý, chỉnh sửa trong quá trình viết luận
án.
Tôi xin gửi lời cảm ơn chân thành tới bác Nguyễn Trọng Toàn – Nguyên giám
đốc Viện pháp y quân đội, người đã cung cấp số liệu và có những lời khuyên bổ ích
giúp tôi tiếp cận số liệu nhân trắc khuôn mặt hiệu quả để tôi hoàn thành được luận
án này.
Tôi xin gửi lời cảm ơn chân thành tới bạn Nguyễn Đình Tư – Phòng thí
nghiệm Tương tác Người máy, Trường Đại học Công nghệ, Đại học Quốc gia Hà
Nội, bạn Phạm Bá Mấy – Viện CNTT, Viện Khoa học Việt Nam đã nhiệt tình giúp đỡ
tôi trong quá trình triển khai thu thập số liệu và can thiệp thông tin nhân trắc.
Tôi xin gửi lời cảm ơn đặc biệt tới anh Đặng Trung Kiên, người đã có những chỉ
dẫn, lời khuyên, động viên bổ ích và thiết thực nhất trong quá trình tôi thực hiện
luận án.
Cuối cùng, tôi xin gửi tấm lòng ân tình tới bố mẹ, chồng con. Gia đình của tôi
là nguồn động viên và truyền nhiệt huyết để tôi hoàn thành luận án.
ii
LỜI CAM ĐOAN
Tôi xin cam đoan: Bản luận án tốt nghiệp này là công trình nghiên cứu thực
sự của cá nhân, được thực hiện trên cơ sở nghiên cứu lý thuyết, kiến thức kinh
điển, nghiên cứu khảo sát tình hình thực tiễn và dưới sự hướng dẫn khoa học của
PGS. TS. Bùi Thế Duy và GS. TS. Tae-wan Kim.
Các số liệu, mô hình toán và những kết quả trong luận án là trung thực, các
giải pháp đưa ra xuất phát từ thực tiễn và kinh nghiệm, chưa từng được công bố
dưới bất cứ hình thức nào trước khi trình, bảo vệ và công nhận bởi “Hội Đồng đánh
giá luận án tốt nghiệp Tiến sĩ Công nghệ Thông Tin”.
Một lần nữa, tôi xin khẳng định về sự trung thực của lời cam kết trên.
Tác giả:
iii
MỤC LỤC
LỜI CẢM ƠN …………………………………………………………………………………………….. i
LỜI CAM ĐOAN ………………………………………………………………………………………. ii
MỤC LỤC………………………………………………………………………………………………… iii
DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT …………………………………… vi
DANH MỤC CÁC BẢNG ………………………………………………………………………… vii
DANH MỤC CÁC HÌNH VẼ ………………………………………………………………….. viii
MỞ ĐẦU ……………………………………………………………………………………………………1
CHƯƠNG 1. TỔNG QUAN ………………………………………………………………………..2
1.1 Bối cảnh…………………………………………………………………………………………2
1.2 Bài toán và cách giải quyết của chúng tôi ………………………………………..3
1.3 Cấu trúc của luận án………………………………………………………………………5
CHƯƠNG 2. KIẾN THỨC CƠ BẢN VỀ DỰNG KHUÔN MẶT TỪ HỘP
SỌ 7
2.1 Các cách tiếp cận dựng khuôn mặt từ hộp sọ …………………………………………7
2.1.1 Dựng thủ công khuôn mặt từ hộp sọ ……………………………………………….7
2.1.2 Dựng khuôn mặt từ hộp sọ với trợ giúp của máy tính………………………..9
2.2 Biểu diễn mô hình ba chiều khuôn mặt và sọ …………………………………………12
2.2.1 Mô hình hóa bề mặt khuôn mặt bằng lưới đa giác …………………………..13
2.2.2 Mô hình hóa bề mặt khuôn mặt bằng bề mặt tham số…………………………14
CHƯƠNG 3. DỰNG MÔ HÌNH BA CHIỀU CỦA SỌ TỪ ẢNH ………………..16
3.1 Những nghiên cứu liên quan ……………………………………………………………….17
3.1.1 Dựng mô hình ba chiều khuôn mặt từ ảnh ……………………………………..17
3.1.2 Các bộ trích chọn đặc trưng trên ảnh ………………………………………………..24
3.2 Thuật toán dựng mô hình ba chiều của sọ từ ảnh…………………………..25
3.2.1 Thuật toán tính đặc trưng sọ ba chiều ……………………………………………27
3.2.2 Ảnh hưởng của lỗi trượt lên đặc trưng sọ ba chiều và cách khắc phục….30
3.2.3 Biến đổi mô hình ba chiều của sọ mẫu bằng RBF …………………………..34
iv
3.2.4 Đặc tính hội tụ và độ phức tạp các thuật toán ………………………………… 36
3.3 Thử nghiệm và đánh giá………………………………………………………………. 39
3.3.1 Tính lỗi trượt và điều chỉnh đặc trưng sọ ba chiều …………………………. 39
3.3.2 Đánh giá hiệu quả điều chỉnh đặc trưng sọ ba chiều dựa trên lỗi trượt … 42
3.4 Kết luận chương ………………………………………………………………………….. 43
CHƯƠNG 4. DỰNG MÔ HÌNH BA CHIỀU KHUÔN MẶT TỪ MÔ HÌNH BA
CHIỀU CỦA SỌ …………………………………………………………………………………………… 44
4.1 Những nghiên cứu liên quan ………………………………………………………… 45
4.1.1 Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của sọ với trợ giúp
của máy tính……………………………………………………………………………………………… 45
4.1.2 Các phương pháp đánh giá mô hình ba chiều khuôn mặt kết quả ……….. 49
4.2 Thuật toán dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của
sọ 51
4.2.1 Các mốc đo, số đo trên sọ và xác định độ dày mô mềm……………………… 54
4.2.2 Biến đổi mô hình ba chiều khuôn mặt mẫu bằng RBF ………………………. 57
4.2.3 Đặc tính hội tụ và độ phức tạp các thuật toán ………………………………… 62
4.3 Thử nghiệm và đánh giá………………………………………………………………. 65
4.3.1 Xác định công thức tính độ dày mô mềm ……………………………………… 65
4.3.2 Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của sọ ………….. 66
4.4 Kết luận chương ………………………………………………………………………….. 69
CHƯƠNG 5. TRÍCH CHỌN ĐẶC TRƯNG TỰ ĐỘNG TRÊN MÔ HÌNH BA
CHIỀU CỦA SỌ …………………………………………………………………………………………… 70
5.1 Những nghiên cứu liên quan ………………………………………………………… 70
5.1.1 Trích chọn đặc trưng ba chiều dựa trên đa giác ……………………………… 70
5.1.2 Trích chọn đặc trưng ba chiều dựa trên điểm…………………………………. 71
5.2 Trích chọn đặc trưng …………………………………………………………………… 73
5.2.1 Phân đoạn dữ liệu ………………………………………………………………………. 74
5.2.2 Trích chọn điểm góc…………………………………………………………………… 79
5.2.3 Trích chọn cạnh …………………………………………………………………………. 82
5.2.4 Đặc tính hội tụ và độ phức tạp các thuật toán ………………………………… 85
5.3 Kết quả thử nghiệm …………………………………………………………………….. 87
5.4 Kết luận chương ………………………………………………………………………….. 89
v
CHƯƠNG 6. KẾT QUẢ NGHIÊN CỨU VÀ BÀN LUẬN ………………………….90
KẾT LUẬN ………………………………………………………………………………………………92
DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN
ĐẾN LUẬN ÁN ……………………………………………………………………………………………….93
TÀI LIỆU THAM KHẢO …………………………………………………………………………94
PHỤ LỤC 1 – HÌNH HỌC E-PI-PÔ-LA …………………………………………………..103
PHỤ LỤC 2 – BIẾN ĐỔI BỀ MẶT BA CHIỀU DỰA VÀO HÀM BÁN KÍNH
CƠ SỞ …………………………………………………………………………………………………………106
PHỤ LỤC 3 – MỘT SỐ PHÉP TOÁN ……………………………………………………..110
PHỤ LỤC 4 – CÁC SỐ ĐO NHÂN TRẮC ……………………………………………….116
vi
DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT
VIẾT TẮT
ABBFP (Angle Between Best Fit Polynomial) : Góc giữa các đa thức tốt nhất
BFP ( Best Fit Polynomial) : Đa thức tốt nhất
ESOD (Extended Second Order Difference) : Vi phân bậc hai mở rộng
MC (Marching Cubes) : Các khối liên kết
MSE (Mean Square Error) : Trung bình sai phương
PCA (Principle Component Analysis) : Phân tích thành phần chính
RBF ( Radial Basic Function) : Hàm bán kính cơ sở
SFM (Structure From Motion) : Cấu trúc từ chuyển động
SOD (Second Order Difference) : Vi phân bậc hai
TPS (Thin-Plate Spline) : Mảnh S-pline mỏng
THUẬT NGỮ
Hộp sọ : Hộp sọ thật khai quật được
Mô hình ba chiều của sọ : Mô hình ba chiều của bề mặt hộp sọ dưới
dạng lưới đa giác
Mô hình ba chiều khuôn mặt : Mô hình ba chiều của bề mặt khuôn mặt
dưới dạng lưới đa giác
vii
DANH MỤC CÁC BẢNG
Bảng 3.1: Lỗi trung bình và lỗi lớn nhất của các điểm đặc sọ trưng ba chiều trước và
sau khi được điều chỉnh ……………………………………………………………………………………42
Bảng 4.1: Lỗi trung bình của hai phương pháp……………………………………………….68
Bảng 6.1: Một số hàm bán kính cơ sở………………………………………………………….108
Bảng 6.2: Các số đo trên sọ………………………………………………………………………..116
Bảng 6.3: Mốc đo độ dày mô mềm ……………………………………………………………..116
Bảng 6.4: Công thức tính độ dày mô mềm theo phương pháp hồi qui tuyến tính 118
Bảng 6.5: Các số đo sọ dùng để tính độ dày mô mềm theo phương pháp dùng mạng
nơ-ron 120
viii
DANH MỤC CÁC HÌNH VẼ
Hình 1.1: Qui trình dựng mô hình ba chiều khuôn mặt từ hộp sọ ………………………. 4
Hình 2.1: Dựng thủ công khuôn mặt từ hộp sọ………………………………………………… 8
Hình 2.2: Một hệ thống chồng khít ảnh lên hộp sọ…………………………………………. 10
Hình 2.3: Dựng khuôn mặt dựa trên giải phẫu. ……………………………………………… 11
Hình 2.4: Dựng khuôn mặt dựa trên độ dày mô mềm. ……………………………………. 11
Hình 2.5: Ví dụ về biểu diễn bề mặt khuôn mặt bằng lưới đa giác. ………………….. 13
Hình 2.6: Ví dụ về biểu diễn bề mặt khuôn mặt bề mặt s-pline. ………………………. 15
Hình 3.1: Dựng mô hình ba chiều khuôn mặt từ ảnh dựa vào hiệu chỉnh ảnh. …… 19
Hình 3.2: Ảnh bảng ca-rô để hiệu chỉnh máy quay. ……………………………………….. 19
Hình 3.3: Dựng mô hình ba chiều khuôn mặt từ ảnh dùng bảng ca-rô để hiệu chỉnh
máy quay. ……………………………………………………………………………………………………… 20
Hình 3.4: Dựng mô hình ba chiều khuôn mặt từ thiết lập nguồn sáng khi chụp
ảnh. 21
Hình 3.5: Dựng mô hình ba chiều khuôn mặt dựa vào mô hình ba chiều khuôn mặt
mẫu. 22
Hình 3.6: Dựng mô hình ba chiều của sọ từ ảnh. …………………………………………… 27
Hình 3.7: Tính điểm đặc trưng sọ ba chiều……………………………………………………. 29
Hình 3.8: Một số điểm đặc trưng sọ ba chiều. ……………………………………………….. 29
Hình 3.9: Lỗi trượt và điều chỉnh điểm ba chiều. …………………………………………… 30
Hình 3.10: Mối quan hệ giữa điểm hai chiều và ba chiều. ………………………………. 33
Hình 3.11: Đánh giá sai số trượt và điều chỉnh đặc trưng sọ ba chiều. ……………… 35
Hình 3.12: Mô hình ba chiều của sọ mẫu. …………………………………………………….. 36
Hình 3.13: Xác định điểm đặc trưng trên mô hình ba chiều của sọ mẫu……………. 36
Hình 3.14: Chụp ảnh sọ quét. ……………………………………………………………………… 39
Hình 3.15: Hộp sọ quét trước (trái) và sau (phải) khi đánh dấu thêm các nhãn. …. 39
Hình 3.16: Đối sánh đặc trưng SIFT…………………………………………………………….. 40
Hình 3.17: Đối sánh đặc trưng HARRIS. ……………………………………………………… 40
Hình 3.18: Lỗi trượt trên ảnh của hộp sọ thứ nhất………………………………………….. 41
Hình 3.19: Lỗi trượt trên ảnh của hộp sọ thứ hai……………………………………………. 41
ix
Hình 3.20: Đặc trưng sọ ba chiều trước điều chỉnh và sau điều chỉnh. ………………43
Hình 4.1: Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của sọ dựa vào độ
dày mô mềm. ………………………………………………………………………………………………….46
Hình 4.2: Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của sọ của Bullock.
46
Hình 4.3: Các cấp biến đổi trong phương pháp của Archer………………………………47
Hình 4.4: Các thành phần dùng để khôi phục khuôn mặt . ……………………………….49
Hình 4.5: Tìm công thức tính độ dày mô mềm. ………………………………………………51
Hình 4.6: Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều của sọ………….53
Hình 4.7: Gắn kim trên mô hình ba chiều của sọ…………………………………………….54
Hình 4.8: Mốc nhân trắc trên sọ……………………………………………………………………54
Hình 4.9: Nội suy kim …………………………………………………………………………………58
Hình 4.10: Biến đổi mô hình ba chiều khuôn mặt mẫu ……………………………………59
Hình 4.11: Các điểm mốc chuẩn hóa dữ liệu trên mô hình ba chiều khuôn mặt
mẫu 61
Hình 4.12: Đồ thị mô tả trung bình sai phương. ……………………………………………..66
Hình 4.13: Hai mô hình ba chiều khuôn mặt kết quả ………………………………………67
Hình 5.1: Bề mặt và bề mặt trung tâm …………………………………………………………..72
Hình 5.2: Nối và làm trơn đặc trưng đường……………………………………………………72
Hình 5.3: Làm trơn và nối các đồ thị …………………………………………………………….73
Hình 5.4: Trích chọn đặc trưng trên mô hình ba chiều của sọ. ………………………….74
Hình 5.5: Hộp bao mô hình ba chiều của sọ. ………………………………………………….75
Hình 5.6: Phân đoạn lát cắt mô hình ba chiều của sọ. ……………………………………..76
Hình 5.7: Minh họa phương pháp tập mức. ……………………………………………………77
Hình 5.8: Biên của đối tượng ứng với F(u,C) khác nhau………………………………….79
Hình 5.9: Các trường hợp của MC (ba hàng trên). Các trường hợp có điểm góc ứng
cử viên (hàng cuối) ………………………………………………………………………………………….80
Hình 5.10: Mặt nạ Sobel ……………………………………………………………………………..82
Hình 5.11: Mặt nạ Canny…………………………………………………………………………….83
Hình 5.12: Cy cho trích chọn điểm cạnh lồi (trái), Cyi cho trích chọn điểm cạnh lõm
84
(phải) ………………………………………………………………………………………………………..84
x
Hình 5.13: Cửa sổ hình tròn để xác định tỉ lệ SUSAN ……………………………………. 84
Hình 5.14: Cửa sổ ba chiều hình hộp để xác định tỉ lệ SUSAN ……………………….. 85
Hình 5.15: Điểm cạnh ………………………………………………………………………………… 88
Hình 5.16: Điểm góc………………………………………………………………………………….. 88
Hình 6.1: Liên hệ của cặp điểm đối sánh x, x’và các thuật ngữ. …………………….. 103
Hình 6.2: Biến đổi đồng hình ……………………………………………………………………. 105
Hình 6.3: Các tam giác chung đỉnh p………………………………………………………….. 112
Hình 6.4: Hai tam giác kề chung cạnh e ……………………………………………………… 112
Hình 6.5: Hai đỉnh đối diện cạnh e của hai tam giác kề ………………………………… 112
Hình 6.6: Xấp xỉ đa thức…………………………………………………………………………… 113
Hình 6.7: Xấp xỉ đa thức trái và phải cạnh e ……………………………………………….. 113
Hình 6.8: Nhân chập I0 = I ∗ H ………………………………………………………………….. 114
Hình 6.9: Hai bề mặt khác nhau. ……………………………………………………………….. 115
Hình 6.10: Khoảng cách không đối xứng. …………………………………………………… 115
1
MỞ ĐẦU
Luận án nghiên cứu những vấn đề xung quanh bài toán dựng lại khuôn mặt
ba chiều từ hộp sọ. Có hai cách tiếp cận phục dựng lại khuôn mặt ba chiều từ hộp
sọ: phương pháp giải phẫu và phương pháp dựa trên độ dày mô mềm. Luận án
tập trung vào cách tiếp cận dựa trên độ dày mô mềm vì phương pháp này không
cần tri thức sâu rộng về giải phẫu khuôn mặt như phương pháp giải phẫu. Hơn
nữa, phương pháp này dễ dàng tận dụng sự hỗ trợ của máy tính trong việc thống
kê đo đạc các thông tin liên quan đến dựng khuôn mặt như độ dày mô mềm, số
đo sọ.
Qui trình dựng mô hình ba chiều khuôn mặt từ hộp sọ dựa vào mô mềm có
sự hỗ trợ của máy tính gồm có ba giai đoạn chính: xây dựng mô hình ba chiều
của sọ, xác định mốc đo trên mô hình ba chiều của sọ nơi gắn độ dày mô mềm
biết trước, và biến đổi mô hình ba chiều khuôn mặt mẫu thành mô hình ba chiều
khuôn mặt kết quả. Trong luận án này, chúng tôi đề xuất ba thuật toán liên quan
đến dựng mô hình ba chiều khuôn mặt từ hộp sọ, như sau:
Thứ nhất, chúng tôi đề xuất thuật toán dựng mô hình ba chiều của sọ từ ảnh
hai chiều và điều chỉnh lỗi trượt phát sinh để tăng độ chính xác của mô hình ba
chiều của sọ kết quả.
Thứ hai, chúng tôi đề xuất thuật toán dựng mô hình ba chiều khuôn mặt từ
mô hình ba chiều của sọ, trong đó kết hợp biến đổi mô hình ba chiều khuôn mặt
mẫu bằng mạng các hàm bán kính cơ sở (Radial Basic Function – RBF), ước
lượng độ dày mô mềm từ số đo sọ và nội suy độ dày mô mềm để tăng tính chân
thực và độ chính xác của mô hình ba chiều khuôn mặt kết quả.
Cuối cùng, chúng tôi đề xuất thuật toán trích trọn đặc trưng cạnh và góc tự
động trên mô hình ba chiều của sọ để hỗ trợ cho việc đánh dấu điểm mốc trên mô
hình ba chiều của sọ. Thuật toán là sự kết hợp hiệu quả giữa phân đoạn dữ liệu
trên mô hình ba chiều của sọ và phép nhân chập.
2
CHƯƠNG 1. TỔNG QUAN
1.1 Bối cảnh
Dựng lại khuôn mặt ba chiều là một trong những bài toán được chú ý nhất
trong dựng lại đối tượng ba chiều bởi miền ứng dụng rộng lớn của nó: trong giải
trí, giao tiếp từ xa và đặc biệt là nhận dạng [21, 23, 68, 74]. Khuôn mặt ba chiều
dùng để nhận dạng điều tra khoanh vùng tội phạm. Khuôn mặt ba chiều làm cho
các cuộc họp, hội nghị từ xa sống động và hiệu quả hơn. Khuôn mặt ba chiều giúp
tạo nên các nhân vật chân thực trong phim, trong trò chơi điện tử. Trong bài toán
dựng lại khuôn mặt ba chiều, khôi phục khuôn mặt ba chiều từ hộp sọ có ý nghĩa
xã hội rất lớn. Khuôn mặt dựng được từ hộp sọ có thể dùng trong khảo cổ học để
tái tạo khuôn mặt của người cổ, hoặc xây dựng chân dung của các nhân vật lịch sử.
Khuôn mặt dựng được từ hộp sọ hỗ trợ điều tra trong các vụ án. Bên cạnh đó, hộp
sọ mang nhiều thông tin về độ tuổi, giới tính và nguồn gốc của tử thi. Hơn nữa, khi
khai quật tử thi, hộp sọ thông thường ít bị phá hủy nhất. Do vậy, khôi phục khuôn
mặt từ hộp sọ là bài toán thu hút nhiều sự quan tâm trong dựng lại khuôn mặt ba
chiều [7, 36, 50, 69, 83, 90].
Trong các nghiên cứu về xây dựng lại khuôn mặt từ hộp sọ, độ chính xác của
khuôn mặt tái tạo luôn là mối quan tâm hàng đầu bởi vì những thay đổi dù rất nhỏ
trên khuôn mặt người rất dễ nhận biết. Biederman và Kalocsai [9] nhận định nhận
dạng khuôn mặt và nhận dạng đồ vật nói chung có rất nhiều điểm khác nhau. Nhận
dạng khuôn mặt rất nhạy cảm với độ tương phản, ánh sáng, kích thước và đặc biệt
là góc nhìn. Trong việc nhận dạng đồ vật nói chung, những yếu tố này ảnh hưởng
rất ít hoặc không ảnh hưởng. Bên cạnh đó, sự khác biệt của đồ vật có thể nêu tên,
liệt kê một cách dễ dàng, trong khi sự sai khác nhỏ trên khuôn mặt người ta có thể
cảm nhận thấy nhưng không dễ gọi tên. Chúng ta luôn mong muốn tìm ra các cải
tiến trong các kỹ thuật để cải thiện độ chính xác của khuôn mặt kết quả.
Trong luận án này, chúng tôi nghiên cứu một số kỹ thuật khôi phục khuôn
mặt ba chiều từ hộp sọ.
3
1.2 Bài toán và cách giải quyết của chúng tôi
Bài toán dựng mô hình ba chiều khuôn mặt từ hộp sọ có đầu vào là hộp sọ khai
quật được; đầu ra là mô hình ba chiều khuôn mặt phù hợp với hộp sọ. Để giải quyết
bài toán này có rất nhiều cách tiếp cận khác nhau.
Trước đây, người ta dựng mô hình mặt một cách thủ công. Các chuyên gia
thường nặn hộp sọ đất sét, thạch cao giống với hộp sọ khai quật được. Sau đó cùng
với sự hỗ trợ, nhận xét của các chuyên gia, mô mặt được đắp thêm vào hộp sọ đất sét,
thạch cao để có được khuôn mặt cuối cùng. Việc nắn chỉnh, đắp hộp sọ và mô rất kỳ
công và tốn thời gian. Từ khi bài toán được đưa vào giải quyết bằng máy tính, việc
mô phỏng hộp sọ, các lớp mô trên mặt được được thực hiện nhanh chóng và hiệu quả
hơn.
Với sự hỗ trợ của máy tính, sau khi mô phỏng hộp sọ ba chiều, người ta có thể
dựng mô hình ba chiều khuôn mặt dựa trên giải phẫu hoặc dựng khuôn mặt dựa trên
độ dày mô mềm. Phương pháp dựa trên giải phẫu yêu cầu hiểu biết về cấu trúc giải
phẫu sinh học của khuôn mặt rất cao. Còn đối với phương pháp dựa trên độ dày mô
mềm, thông tin về độ dày mô mềm phải được cung cấp.
Trong nghiên cứu của mình, chúng tôi lựa chọn phương pháp dựng lại mô hình
ba chiều khuôn mặt dựa trên hộp sọ dùng thông tin về độ dày mô mềm với sự trợ giúp
của máy tính. Độ dày mô mềm ở những vị trí mốc quan trọng trên hộp sọ được ước
lượng để làm cơ sở phủ khuôn mặt mẫu khớp với hộp sọ. Phục dựng khuôn mặt dựa
trên độ dày mô mềm ít yêu cầu kiến thức giải phẫu khuôn mặt hơn, trong khi đưa ra
mô hình khuôn mặt kết quả lại nhanh chóng và chính xác. Hơn nữa, cách tiếp cận dựa
trên độ dày mô mềm tận dụng tốt sự hỗ trợ của máy tính trong việc thống kê, đo đạc,
ước lượng độ dày mô mềm. Chúng tôi định nghĩa Hộp sọ là hộp sọ thật khai quật
được. Mô hình ba chiều của sọ là mô hình ba chiều của bề mặt hộp sọ dưới dạng lưới
đa giác. Mô hình ba chiều khuôn mặt là mô hình ba chiều của bề mặt khuôn mặt dưới
dạng lưới đa giác.
Bài toán dựng mô hình ba chiều khuôn mặt từ hộp sọ dựa vào thông tin mô mềm
được giải quyết như sau (Hình 1.1): Trước tiên, hộp sọ tìm thấy được dùng để xây
dựng mô hình ba chiều của sọ trên máy tính. Tiếp theo, trên mô hình ba chiều của sọ
này người ta xác định ra một số mốc mà tại đó biết độ dày mô mềm. Tại các mốc này
người ta gắn lên đó các kim có độ dài bằng độ dày mô mềm biết trước. Cuối cùng,
dùng một bề mặt ba chiều phủ lên và chạm vào các kim đó tạo ra diện mạo khuôn
mặt. Bề mặt ba chiều tạo nên diện mạo khuôn mặt thông thường là một mô hình ba
chiều khuôn mặt mẫu được biến đổi.

Tác giả

Mai Thị Châu

Nhà xuất bản

Đại học Công nghệ,

Năm xuất bản

2013

Người hướng dẫn

Bùi Thế Duy, Tae-wan Kim

Định danh

00050002597

Kiểu

text

Định dạng

text/pdf

Nhà xuất bản

Khoa công nghệ thông tin,

Trường đại học Công nghệ

Các đánh giá

Hiện chưa có đánh giá cho sản phẩm.

Hãy là người đầu tiên đánh giá “Nghiên cứu một số kỹ thuật khôi phục mặt người ba chiều từ sọ. Luận án TS. Công nghệ thông tin”

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *