Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn YSZ và điện cực nhạy khí nano - oxit kim loại
Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn YSZ và điện cực nhạy khí nano - oxit kim loại
Xem bên trong

Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn YSZ và điện cực nhạy khí nano – oxit kim loại

38 tr. + CD-ROM + Tóm tắt
Luận văn ThS. Vật liệu và linh kiện nano (Chuyên ngành đào tạo thí điểm) — Trường Đại học Công nghệ. Đại học Quốc gia Hà Nội, 2014

0.00

Tải về miễn phí bản đầy đủ PDF luận văn tại Link bản đầy đủ 1

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

ĐỖ VĂN HƯỚNG

CẢM BIẾN ĐIỆN HÓA RẮN TRÊN CƠ SỞ CHẤT ĐIỆN
LY RẮN YSZ VÀ ĐIỆN CỰC NHẠY KHÍ NANO – OXIT
KIM LOẠI

LUẬN VĂN THẠC SĨ VẬT LIỆU VÀ LINH KIỆN NANO

HÀ NỘI – 2014

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

ĐỖ VĂN HƯỚNG

CẢM BIẾN ĐIỆN HÓA RẮN TRÊN CƠ SỞ CHẤT ĐIỆN
LY RẮN YSZ VÀ ĐIỆN CỰC NHẠY KHÍ NANO – OXIT
KIM LOẠI

Chuyên ngành: Vật liệu và Linh kiện Nano
Mã số: Chuyên ngành đào tạo thí điểm

LUẬN VĂN THẠC SĨ VẬT LIỆU VÀ LINH KIỆN NANO

NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. HỒ TRƯỜNG GIANG

HÀ NỘI – 2014

LỜI CAM ĐOAN

Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn
của TS. Hồ Trường Giang. Các số liệu, kết quả nêu trong luận văn được trích dẫn lại
từ các bài báo đã và sắp được xuất bản của tôi. Các số liệu, kết quả này là trung thực
và chưa từng được ai công bố trong bất kì công trình nào khác.
Hà Nội, ngày 30 tháng 10 năm 2014
Tác giả

ĐỖ VĂN HƯỚNG

LỜI CẢM ƠN

Với lòng biết ơn sâu sắc, tôi xin gửi lời cảm ơn chân thành tới TS. Hồ Trường
Giang, người đã trực tiếp giao đề tài và tận tình chỉ bảo, hướng dẫn tôi hoàn thiện luận
văn này.
Tôi xin gửi lời cảm ơn chân thành tới các cán bộ của Phòng Cảm biến và thiết
bị đo khí, Viện Khoa học Vật liệu đã tạo điều kiện thuận lợi về trang thiết bị và giúp
đỡ tôi nhiệt tình trong quá trình thực hiện luận văn.
Tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới thầy, cô giáo trong Khoa Vật lý kỹ
thuật và công nghệ nano cũng như các thầy, cô giáo Trường Đại học Công Nghệ, Đại
học Quốc gia Hà Nội đã chỉ bảo và giảng dạy tôi trong những năm học qua cũng như
giúp cho tôi hoàn thiện luận văn này.
Cuối cùng, tôi xin bày tỏ tình cảm tới những người thân trong gia đình, bạn bè
đã động viên, giúp đỡ, hỗ trợ tôi về mọi mặt.
Tôi xin chân thành cảm ơn!
Hà Nội, ngày 22 tháng 11 năm 2014
Học viên

Đỗ Văn Hướng

MỤC LỤC

MỞ ĐẦU …………………………………………………………………………………………………………. 1
CHƯƠNG I: TỔNG QUAN …………………………………………………………………………….. 4
1.1. Cảm biến khí …………………………………………………………………………………………… 4
1.2. Các loại cảm biến điện hóa rắn ………………………………………………………………….. 6
1.2.1. Cảm biến điện hóa rắn kiểu dòng điện ………………………………………………….. 6
1.2.2. Cảm biến điện hóa rắn kiểu điện thế …………………………………………………….. 8
1.2.3. Cảm biến thế hỗn hợp (Mixed-potential gas sensor) ……………………………… 10
1.3. Vật liệu dẫn ion YSZ………………………………………………………………………………. 11
1.4. Vật liệu nhạy khí – oxit nano kim loại ………………………………………………………. 13
1.4.1. Giới thiệu về vật liệu nhạy khí nano ABO3 ………………………………………….. 14
CHƯƠNG 2: PHƯƠNG PHÁP THỰC NGHIỆM VÀ NGHIÊN CỨU …………….. 17
2.1. Chế tạo cảm biến ……………………………………………………………………………………. 17
2.1.1. Vật liệu dẫn ion YSZ ………………………………………………………………………… 17
2.1.2. Vật liệu nhạy khí nano-oxit kim loại …………………………………………………… 18
2.2. Phân tích tính chất nhạy khí của cảm biến …………………………………………………. 22
CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN ……………………………………………………. 24
3.1. Đánh giá đặc trưng dẫn ion của vật liệu YSZ …………………………………………….. 24
3.2. Cấu trúc các lớp của cảm biến …………………………………………………………………. 27
3.3. Tính chất nhạy khí của cảm biến Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3 28
3.3.1. Đáp ứng cảm biến trong khí NOx ……………………………………………………….. 29
3.3.2. Đáp ứng cảm biến trong khí HC (C3H8 và C6H14) …………………………………. 33
3.3.3. Đáp ứng cảm biến trong khí CO …………………………………………………………. 35
3.4. So sánh tính chất nhạy khí của các cảm biến điện hóa rắn Pt/YSZ/LaNiO3 và
Pt/YSZ/LaNiO3-SmFeO3 ………………………………………………………………………………. 36
KẾT LUẬN ……………………………………………………………………………………………………….

DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT
NOx NO2, NO
LnMO3 Ln là kim loại đất hiếm: La, Nd, Sm, Gd…và M là kim loại
chuyển tiếp 3d: V, Cr, Fe, Ni…
TBP Điện cực – chất điện ly – khí
SEM Kính hiển vi điện tử quét

DANH MỤC CÁC BẢNG BIỂU

Bảng 1: Một số loại cảm biến khí thường được sử dụng ………………………………………… 5
Bảng 2: Các phần tử điện tương đương của Pt/YSZ /Pt tại nhiệt độ hoạt động 400
o
C.
……………………………………………………………………………………………………………………… 26
Bảng 3: So sánh độ nhạy các khí của cảm biến Pt/YSZ/LaNiO3 (ký hiệu CB1) và
Pt/YSZ/LaNiO3-SmFeO3 (ký hiệu CB2). ……………………………………………………………… 38

DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ
Chương 1
Hình 1. 1: Cấu trúc của cảm biến điện hóa rắn kiểu dòng điện [22]. ……………………… 7
Hình 1. 2: Cấu tạo của cảm biến điện hóa rắn kiểu dòng cho phát hiện đồng thời 2 khí
O2 và NO [22]. ………………………………………………………………………………………………….. 8
Hình 1. 3: Cấu trúc của cảm biến oxy dạng điện thế [19]. …………………………………….. 9
Hình 1. 4: Cấu trúc cảm biến thế hỗn hợp. ………………………………………………………… 11
Hình 1. 5: Cấu trúc mạng tinh thể lập phương của YSZ. ……………………………………… 12
Hình 1. 6: Cấu trúc perovskite (ABO3) lý tưởng (a); sự sắp xếp các bát diện trong cấu
trúc perovskite lập phương lý tưởng (b); ……………………………………………………………. 14
Chương 2
Hình 2. 1: Giản đồ nhiễu xạ tia X của bột YSZ sau khi nung ở 500
o
C [1]. …………….. 17
Hình 2. 2: Giản đồ nhiễu xạ (a); ảnh SEM (b) của mẫu bột SmFeO3 sau khi thiêu kết ở
500
o
C [3]. ……………………………………………………………………………………………………… 18
Hình 2. 3: Giản đồ XRD (a); ảnh SEM (b) của mẫu bột LaNiO3. …………………………. 19
Hình 2. 4: Hệ thiết bị in phủ. ……………………………………………………………………………. 20
Hình 2. 5: Sơ đồ quy trình chế tạo cảm biến điện hóa rắn với cấu hình Pt/YSZ/LaNiO3
và Pt/YSZ/LaNiO3-SmFeO3. ……………………………………………………………………………… 21
Hình 2. 6: Ảnh chụp quang học của: chíp cảm biến Pt/YSZ/SmFeO3 (a); chip cảm biến
Pt/YSZ/LaNiO3- SmFeO3 (b) được gắn trên đế Al2O3 ; bếp vi nhiệt Pt trên mặt sau đế
Al2O3 (c). ………………………………………………………………………………………………………… 22
Hình 2. 7: Vỏ cảm biến (buồng đo) được thiết kế chế tạo: (a) cấu trúc; (b) ảnh chụp
lớp vỏ bên trong và bên ngoài …………………………………………………………………………… 23
Hình 2. 8: Ảnh hệ phân tích tính chất nhạy khí. ………………………………………………….. 23
Chương 3
Hình 3. 1: Cấu trúc lớp màng YSZ trong phương pháp đo tổng trở gồm 2 điện cực Pt
ở 2 phía của lớp màng. …………………………………………………………………………………….. 24
Hình 3. 2: Ảnh SEM bề mặt viên nén YSZ sau khi nung ủ ở nhiệt độ 1300
o
C. ……….. 24

Hình 3. 3: Kết quả đo tổng trở các màng YSZ sau khi ủ 1300
o
C tại các nhiệt độ hoạt
động 400
o
C và đường khớp số liệu tổng trở theo mô hình tính toán;Hình chèn là phổ
tổng trở của màng YSZ tại nhiệt độ hoạt động 500
o
C và 600
o
C. …………………………. 25
Hình 3. 4: Sơ đồ mạch tương đương ứng với hệ cảm biến điện hóa rắn. ……………….. 26
Hình 3. 5: Ảnh SEM:lớp điện cực Pt trên YSZ (a); mặt cắt lớp điện cực Pt/YSZ (b);
lớp nhạy khí LaNiO3 (c); lớp điện cực LaNiO3 trên YSZ (d). ………………………………… 27
Hình 3. 6: Đáp ứng trong 15, 30, 60 và 90 ppm NO2 tại các nhiệt độ hoạt động 500,
550 và 600
o
C của cảm biến: Pt/YSZ/ LaNiO3 (a); hình chèn là đáp ứng tại nhiệt độ
450
o
C và Pt/YSZ/ LaNiO3-SmFeO3 (b). …………………………………………………………….. 29
Hình 3. 7: Đáp ứng trong 15, 30, 60 và 90 ppm NO tại các nhiệt độ hoạt động 500,
550 và 600
o
C của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). .. 30
Hình 3. 8: Minh họa cấu trúc hình học của vùng chuyển tiếp 3 pha khí-điện cực-chất
điện ly của 2 loại cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). ….. 31
Hình 3. 9: Đáp ứng của cảm biến Pt/YSZ/SmFeO3 trong khí CH4, C3H8, CO, C6H14,
NO2 tại các nhiệt độ hoạt động khác nhau theo tài liệu [6]. …………………………………. 33
Hình 3. 10: Đáp ứng trong 15, 30, 60 và 90 ppm C6H14 tại các nhiệt độ hoạt động
500, 550 và 600
o
C của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3
(b). …………………………………………………………………………………………………………………. 33
Hình 3. 11: Sự phụ thuộc của độ thay đổi điện thế vào nồng độ khí C6H14 ở các nhiệt
độ hoạt động khác nhau của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-
SmFeO3 (b). …………………………………………………………………………………………………….. 34
Hình 3. 12: Đáp ứng trong 30, 60 và 90 ppm C3H8 tại các nhiệt độ hoạt động 500, 550
và 600
o
C của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). ………. 35
Hình 3. 13: Đáp ứng trong 15, 30, 60 và 90 ppm CO tại các nhiệt độ hoạt động 500,
550 và 600
o
C của cảm biến: Pt/YSZ/ LaNiO3 (a); và Pt/YSZ/ LaNiO3-SmFeO3 (b). … 35
Hình 3. 14: Biểu đồ so sánh độ nhạy khí của các 2 cảm biến Pt/YSZ/LaNiO3 và
Pt/YSZ/LaNiO3-SmFeO3 hoạt động tại nhiệt độ 500, 550 và 60
o
C. ………………………. 36
Hình 3. 15: Cấu trúc và đặc trưng nhạy khí VOCs của 2 cấu hình cảm biến: Pt/YSZ/Pt
và Pt/YSZ/Pt-SmFeO3 [8]. ………………………………………………………………………………… 37
1

MỞ ĐẦU
Trong các quá trình đốt cháy nhiên liệu ở nhiệt độ cao, việc thừa khí oxy có thể
sẽ tạo ra các khí độc như là NOx (bao gồm NO2 và NO) do oxy sẽ phản ứng với Nitơ
(ở nhiệt độ cao), nếu thiếu khí oxy sẽ gây lãng phí nhiên liệu (không cháy hết) hoặc
tạo ra các sản phẩm chứa các khí như: CO, HC. Các khí thải kể trên là rất độc hại đối
với sức khoẻ con người và gây ô nhiễm môi trường chỉ với nồng độ rất nhỏ cỡ vài
chục ppm (1ppm = 1/10
6
). Vì vậy, việc khống chế, kiểm soát, phát hiện và phân tích
nồng độ các khí này là rất quan trọng. Nó sẽ giúp ta xác định được nồng độ khí độc hại
có trong không khí từ đó có thể đưa ra được các biện pháp xử lý, đặc biệt là kiểm soát
được quá trình đốt cháy nhiên liệu để giảm thiểu các nguồn phát thải này.
Với nồng độ khí trong khí thải (khoảng 0÷1000 ppm) trong vùng nhiệt độ cao
có thể lên tới 1000
o
C, loại cảm biến khí được nghiên cứu và ứng dụng nhiều nhất là
cảm biến điện hóa dựa trên chất điện ly rắn của oxit kim loại. Do đây là loại cảm biến
có độ ổn định tốt, độ chọn lọc cao và hoạt động trực tiếp được trong môi trường khắc
nhiệt. Lambda là loại cảm biến điện hóa rắn đầu tiên đã được thương mại hóa chủ yếu
trong ngành công nghiệp ôtô, với cấu hình Pt/YSZ (ZrO2 + Y2O3)/Pt để điều khiển trực
tiếp nồng độ khí oxy trong quá trình đốt cháy nhiên liệu [49, 36, 40]. Tuy nhiên trên
thực tế, đối với một hệ thống phân tích và kiểm soát các quá trình đốt cháy nhiên liệu
hiện đại thì chỉ một loại cảm biến oxy là chưa đủ mà cần phải có sự kết hợp của nhiều
loại cảm biến khí lại với nhau trong cùng một hệ thống đo đạc và điều khiển. Do đó,
cảm biến điện hoá rắn cho phát hiện các khí như NOx, HC, CO, và CO2 cũng được
quan tâm đặc biệt. Các loại cảm biến điện hóa rắn cho từng loại khí thải như NOx, HC,
CO, và CO2 đã được nghiên cứu phát triển dựa trên cảm biến Lambda bằng cách thay
thế hoặc phủ thêm lên trên một điện cực Pt bằng 1 điện cực nhạy khí oxit kim loại với
cấu hình dạng Pt/YSZ/(oxit kim loại).
Trên thế giới, cảm biến điện hóa rắn đã được nghiên cứu và ứng dụng từ lâu
nhưng hiện nay vẫn đang thu hút được sự quan tâm từ các phòng thí nghiệm cũng như
các hãng công nghiệp. Ngoài ra, các cảm biến điện hóa rắn cho các khí NOx, HC và
CO hiện được nghiên cứu mạnh mẽ. Ở Việt Nam, theo như hiểu biết của tôi, lĩnh vực
này vẫn còn rất hạn chế. Ví dụ có thể kể ra đó là: Viện vật lý kỹ thuật – Đại Học Bách
Khoa Hà Nội, cảm biến được nghiên cứu ở đây là CO2 trên cơ sở chất điện ly rắn
NASICON (hợp chất oxit Na-Zr-Si-P-O12) [3]. Những năm gần đây, Phòng cảm biến
và thiết bị đo khí – Viện Khoa học Vật liệu, đã bắt đầu định hướng và thử nghiệm
nghiên cứu cảm biến điện hóa rắn cho phân tích khí thải. Với một số đề tài đã và đang
thực hiện như: đề tài Phòng thí nghiệm trọng điểm “Nghiên cứu chế tạo cảm biến khí
NOx điện hóa rắn trên cơ sở chất điện ly YSZ” – mã số: CSTĐ01.12, và đề tài thuộc
quỹ Nafosted “Nghiên cứu chế tạo cảm biến khí điện hóa trên cơ sở chất điện ly rắn
YSZ”. Bước đầu, chúng tôi đã nghiên cứu chế tạo thử nghiệm chất điện ly rắn YSZ và
2

một số oxit đa kim loại perovskite định hướng cho nghiên cứu cảm biến điện hóa rắn
cho khí thải với một số kết quả ban đầu đã được công bố [4, 2].
Trên những cơ sở đã trình bày trên, tôi đã lựa chọn vấn đề nghiên cứu của luận
văn là: “Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn YSZ và điện cực nhạy
khí nano – oxit kim loại”.
Ý tưởng của luận văn:
Yêu cầu quan trọng nhất đối với vật liệu được sử dụng làm điện cực nhạy khí
trong cảm biến điện hóa rắn đó là: phải có độ dẫn điện tốt, thứ hai là có độ nhạy khí
cao. Từ những yêu cầu trên, tôi đã lựa chọn oxit đa kim loại perovskite làm vật liệu
nhạy khí do đây là vật liệu có những tính chất đặc biệt như: tính bền nhiệt cao, có khả
năng điều khiển được về độ dẫn điện và tính chất tương tác với khí oxy hóa/khử. Do
đó, các tham số này sẽ là ưu điểm cho thiết kế chế tạo cảm biến khí hoạt động ở nhiệt
độ cao [1]. Vì vậy, các vật liệu này có thể được sử dụng làm điện cực để thay thế cho
điện cực Pt.
Từ đây ý tưởng của luận văn được đưa ra:
Một là, sử dụng vật liệu oxit đa kim loại perovskite LaNiO3 có độ dẫn điện tốt làm
điện cực nhạy khí để thay thế cho một điện cực Pt tạo thành cấu hình cảm biến
Pt/YSZ/LaNiO3. Do LaNiO3 là vật liệu có độ dẫn điện cao [1], đặc biệt có độ bền nhiệt
tốt và nó còn có khả năng tương tác thuận nghịch với khí oxy hóa/khử.
Ngoài ra, dựa trên một số kết quả đã thực hiện tại Phòng “Cảm biến và Thiết bị đo
khí” [2] và một số công trình đã công bố trên thế giới [32, 33], cảm biến điện hóa rắn
Pt/YSZ/Pt-SmFeO3 cho độ nhạy cao với khí NOx và HC tuy nhiên độ ổn định của cảm
biến này là không tốt có thể do SmFeO3 là vật liệu có độ dẫn điện kém. Vì thế, để cải
thiện các đặc tính của cảm biến, tôi sẽ sử dụng vật liệu LaNiO3 có độ dẫn điện tốt làm
lớp điện cực đệm ở bên dưới điện cực nhạy khí SmFeO3 để tạo thành cấu hình cảm
biến Pt/YSZ/LaNiO3-SmFeO3.
Mục tiêu:
Trong luận văn này, tôi sẽ sử dụng hai cấu hình cảm biến Pt/YSZ/LaNiO3 và
Pt/YSZ/LaNiO3-SmFeO3 để đánh giá, nghiên cứu đặc trưng nhạy khí thải, từ đó đánh
giá ảnh hưởng của kim loại điện cực đến độ chọn lọc, độ nhạy và độ ổn định với các
khí thải NOx, HC và CO.
Nội dung nghiên cứu:
– Nghiên cứu đặc trưng của lớp YSZ trong cảm biến điện hóa rắn về tính dẫn ion
qua phép đo phổ tổng trở.
– Chế tạo cảm biến điện hóa rắn dựa trên các nano-oxit đa kim loại perovskite với
cấu trúc Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-SmFeO3.
3

– Nghiên cứu tính chất nhạy khí đối với một số khí thải thông dụng (NOx, CO, và
khí HC) của cảm biến điện họa rắn Pt/YSZ/LaNiO3 và Pt/YSZ/LaNiO3-
SmFeO3 đã chế tạo.
Bố cục của luận văn:
– Mở đầu
– Chương I: Tổng quan.
– Chương II: Các phương pháp thực nghiệm và nghiên cứu.
– Chương III: Kết quả và thảo luận.
– Kết luận.

4

CHƯƠNG I: TỔNG QUAN
1.1. Cảm biến khí
Cùng với sự phát triển kinh tế đất nước, hội nhập với kinh tế khu vực và thế
giới, nhiều khu công nghiệp nước ta đang phát triển nhanh chóng. Tuy nhiên, đi kèm
với nó là những hệ lụy vô cùng xấu đó là khí thải làm ô nhiễm môi trường không khí.
Các khí thải này bao gồm các khí độc, khí gây cháy nổ ví dụ như: CO, CO2, HC, SO2,
NOx thường xuyên tồn tại trong môi trường không khí với nồng độ cao tập chung chủ
yếu ở các thành phố lớn và các khu công nghiệp. Các khí độc chỉ với nồng độ rất nhỏ
cỡ vài ppm đã ảnh hưởng đến sức khỏe con người. Do vậy, việc phát hiện, đo đạc và
phân tích nồng độ khí thải là quan trọng nó sẽ giúp ta xác định được nồng độ khí thải
có trong không khí từ đó có thể đánh giá và đưa ra được các biện pháp xử lý và chuyển
hóa khí gây ô nhiễm hoặc là điều khiển, kiểm soát trực tiếp từ các nguồn phát thải.
Có rất nhiều thiết bị để đo khí có thể kể đến như các thiết bị phân tích khí
truyền thống là: “sắc ký khí”, “thiết bị phân tích phổ linh động ion”, “thiết bị phân tích
phổ khối lượng” và “thiết bị phân tích phổ hấp thụ hồng ngoại” có độ chính xác cao
hiện vẫn đang được sử dụng [31]. Tuy nhiên, các thiết bị này có hạn chế như là: kích
thước lớn, cấu tạo phức tạp, giá thành cao, quá trình vận hành sử dụng thiết bị khó
khăn và thời gian phân tích dài. Vì lý do này, các thiết bị đều được lắp đặt cố định và
không thích hợp cho việc thực hiện phân tích nhanh và trực tiếp tại hiện trường nên chỉ
phù hợp trong công nghiệp và trong các phòng thí nghiệm. Để đáp ứng được với yêu
cầu thực tế, các cảm biến khí hóa học trên cơ sở vật liệu dạng rắn (solid-state chemical
gas sensor) ngày càng được quan tâm và ứng dụng rộng rãi hơn. Một số loại cảm biến
khí trên cơ sở oxit kim loại được quan tâm nghiên cứu nhiều như là: cảm biến độ dẫn
điện (hay còn gọi là cảm biến bán dẫn), cảm biến nhiệt xúc tác, cảm biến điện hóa,
cảm biến dựa trên hiệu ứng trường của một số linh kiện bán dẫn. Cảm biến dựa trên
vật liệu nhạy khí là oxit kim loại có ưu điểm vượt trội: nguyên lý đơn giản, dải đo
rộng, độ bền và ổn định cao, thiết kế đơn giản, giá thành rẻ, có khả năng chế tạo hàng
loạt, thời gian thực hiện phép đo nhanh, có thể thực hiện đo trực tiếp và trực tuyến
trong môi trường cần phân tích khí và dễ kết hợp với thiết bị điều khiển khác. Tuy
nhiên, tính chất nhạy khí của oxit kim loại phụ thuộc vào rất nhiều yếu tố khó kiểm
soát, ví dụ như: kích thước hạt và dạng hạt; kết cấu hình thái học của các hạt tinh thể;
ảnh hưởng của các chất xúc tác; ảnh hưởng của điện cực; cấu hình cảm biến; ảnh
hưởng của điều kiện hoạt động cảm biến; v.v. Hiện tại các nghiên cứu trong lĩnh vực
này vẫn đang hướng tới mục đích là cải thiện các tham số của cảm biến đặc biệt là về:
độ nhạy, độ chọn lọc, độ ổn định và độ tin cậy. Dưới đây là bảng liệt kê một số loại
cảm biến khí thường được sử dụng bao gồm: cấu tạo, nguyên tắc hoạt động, ưu điểm
và nhược điểm của từng loại.

5

Bảng 1: Một số loại cảm biến khí thường được sử dụng
Các loại
cảm biến
Cấu tạo Nguyên tắc Ưu điểm Nhược điểm

Cảm biến
khối
lượng
– Bộ phận hấp phụ
khí.
– Bộ phận nhận biết
sự thay đổi khối
lượng.

Dựa trên sự thay
đổi khối lượng do
khí hấp phụ trên bề
mặt vật liệu để xác
định nồng độ.
– Công suất
tiêu thụ nhỏ có
thể đo trong
khoảng nồng
độ lớn.
– Thiết kế thiết
bị đo phức tạp.
– Thời gian hồi
đáp chậm.
– Độ phân giải
kém.

Cảm biến
quang

– Bộ phận lấy mẫu
khí.
– Các đầu phát thu
tín hiệu quang học.

Dựa trên phổ hấp
thụ quang học của
từng loại khí khác
nhau để xác định
nồng độ khí.

– Công suất
tiêu thụ nhỏ.
– Độ ổn định
cao.
– Thiết kế rất
phức tạp.
– Cần có xử lý
tín hiệu phổ hấp
thụ, thời gian
phân tích lâu.
Cảm biến
điện trở
(trên cơ
sở các
oxit bán
dẫn)

– Lớp vật liệu nhạy
khí là oxit bán dẫn.
– Bếp vi nhiệt.
Dựa trên sự thay
đổi độ dẫn của của
vật liệu nhạy khí
trong môi trường
có khí cần đo.
– Độ nhạy cao
hay độ phân
giải tốt.
– Chế tạo đơn
giản.

– Độ chọn lọc,
độ ổn định kém.
Cảm biến
điện hóa
sử dụng
chất điện
ly lỏng
– Điện cực
– Chất điện ly lỏng
(dung dịch H2SO4)
Hoạt động của cảm
biến này dựa trên
các nguyên lý về
điện hóa.
– Hoạt động tại
nhiệt độ phòng.
– Độ chọn lọc
cao.

– Tuổi thọ kém,
giá thành cao.

Cảm biến
dạng điện
hóa rắn

– Điện cực nhạy khí
– Chất điện ly
– Điện cực so sánh

Hoạt động của cảm
biến này dựa trên
các nguyên lý về
điện hóa.
– Độ chọn lọc
cao.
– Độ phân giải
tốt.
– Tuổi thọ cao,
giá thành thấp.

– Thiết kế khá
phức tạp.
Trong bảng 1 chúng ta thấy rằng mỗi một loại cảm biến đều có những ưu,
nhược điểm khác nhau. Tuy nhiên để có thể ứng dụng được vào thực tế trong việc đo
đạc và phân tích nồng độ khí thải yêu cầu chung đối với cảm biến khí là:
6

 Độ nhạy cao;
 Độ chọn lọc khí tốt;
 Thời gian hồi đáp nhanh;
 Độ ổn định tốt;
 Độ già hóa hay thời gian sống phải lâu;
 Giá thành rẻ;
Từ những yêu cầu trên và so sánh các ưu, nhược điểm của từng loại cảm biến
như ở trong bảng 1, nhận thấy cảm biến dạng điện hóa rắn là phù hợp cho thiết bị
dạng phân tích khí thải trong môi trường chứa nhiều loại khí và có thể hoạt động trực
tiếp trong môi trường khắc nhiệt (có nhiệt độ cao, thường xuyên xảy ra các phản ứng
oxy/hóa khử…).
1.2. Các loại cảm biến điện hóa rắn
Cảm biến điện hóa bao gồm: cảm biến sử dụng chất điện ly lỏng và cảm biến sử
dụng chất điện ly rắn. Ưu điểm của cảm biến sử dụng chất điện ly lỏng đó là: hoạt
động tại nhiệt độ phòng và có độ chọn lọc cao, tuy nhiên nhược điểm của nó là: tuổi
thọ kém, giá thành cao và do sử dụng các chất điện ly lỏng thường là dung dịch H2SO4
nên đôi khi cũng khá là độc hại. Trong khi đó, cảm biến điện hóa sử dụng chất điện ly
rắn có nhiều ưu điểm nổi trội như: độ chọn lọc cao, độ phân giải tốt, tuổi thọ cao và
giá thành rẻ; nhược điểm của cảm biến này là: thiết kế khá phức tạp cho hoạt động
nhiệt độ cao. Theo yêu cầu thực tế, để cảm biến có thể đo đạc và phân tích được trực
tiếp trong môi trường khí thải (điều kiện nhiệt độ cao, thường xuyên có các tác nhân
oxy hóa/khử), cảm biến điện hóa sử dụng chất điện ly rắn dựa trên các oxit kim loại
vẫn là lựa chọn tối ưu nhất từ trước đến nay. Dưới đây là trình bày về cấu tạo, cơ chế
hoạt động và ưu, nhược điểm của một số loại cảm biến điện hóa rắn theo kiểu dòng và
thế.
1.2.1. Cảm biến điện hóa rắn kiểu dòng điện
Cảm biến điện hóa rắn kiểu dòng có ưu điểm là đặc trưng tín hiệu ra (I) phụ
thuộc tuyến tính vào nồng độ khí (Cgas). Cấu trúc của cảm biến điện hóa rắn dạng dòng
(ví dụ, cho khí oxy) như trong hình 1.1, bao gồm: lớp điện ly rắn; 2 điện cực anode
(cực dương) và cathode (cực âm) được phủ lên trên 2 mặt của lớp chất điện ly. Ngoài
ra, trong cấu trúc này còn có khe để điều khiển khí khuếch tán vào bề mặt điện cực.

Tác giả

Đỗ Văn Hướng

Nhà xuất bản

Trường Đại Học Công nghệ

Năm xuất bản

2014

Người hướng dẫn

Hồ Trường Giang

Định danh

00050004762

Kiểu

text

Định dạng

text/pdf

Nhà xuất bản

Khoa vật lý kỹ thuật và công nghệ nano,

Trường đại học Công nghệ

Các đánh giá

Hiện chưa có đánh giá cho sản phẩm.

Hãy là người đầu tiên đánh giá “Cảm biến điện hóa rắn trên cơ sở chất điện ly rắn YSZ và điện cực nhạy khí nano – oxit kim loại”

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *